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Abstract

Recognizing player jersey number in sports match video

streams is a challenging computer vision task. The hu-

man pose and view-point variations displayed in frames

lead to many difficulties in recognizing the digits on jer-

seys. These challenges are addressed here using an ap-

proach that exploits human body part cues with a Region-

based Convolutional Neural Network (R-CNN) variant for

digit level localization and classification. The paper first

adopts the Region Proposal Network (RPN) to perform an-

chor classification and bounding-box regression over three

classes: background, person and digit. The person and digit

proposals are geometrically related and fed to a network

classifier. Subsequently, it introduces a human body key-

point prediction branch and a pose-guided regressor to get

better bounding-box offsets for generating digit proposals.

A novel dataset of soccer-match video frames with corre-

sponding multi-digit class labels, player and jersey number

bounding boxes, and single digit segmentation masks is col-

lected. Our framework outperforms all existing models on

jersey number recognition task. This work will be essential

to the automation of player identification across multiple

sports, and releasing the dataset will ease future research

on sports video analysis.

1. Introduction

Broadcast sports are one of the most watched and stud-

ied videos in the world. Game analysis is performed in

real time by professional commentators and videos are of-

ten recorded for coaching purposes. Analysis requires the

review of thousands of hours of footage over the course

of a season, and requires tasks that are impractical to be

performed by human observer. Therefore, the automation

of analysis is especially important. Tasks such as player

detection, tracking, identification, as well as generation of

game synopses, can be automated using computer vision

algorithms to gather comprehensive sports match informa-

tion without ever having to watch a minute of game video.

Automated sports video analysis enhances the broadcasting

experience for both the narrator and audience by provid-

ing auxiliary information of players location and identity at

each time point. Match statistics from video analysis can be

provided directly to coaches and players to improve strategy

planning, opponent scouting, and player performance.

Figure 1. Illustration of two type of distractions (best viewed in

color). Numbers bounded by green box are the jersey numbers

of our interest while red-boxed numbers are noise. Our motiva-

tion partially comes from how to deal with various kinds of false

positives.

Identifying players in sports matches is a key research

challenge to make all the merits of automatic sports analysis

come true. However, there are numerous problems in rec-

ognizing players in unconstrained sports video. The video

resolution, viewpoint and motions of cameras, players pose,

lighting conditions, variations of sports fields and jerseys,

all these factors can introduce significant challenges for au-

tomatic video analysis. Traditional approaches for player

recognition in sports can be organized into two categories:

identifying players via face recognition or jersey number

recognition. Both approaches have their own strength and

flaws. Face recognition is robust given high resolution

closeup shot, while infeasible for wide shots where faces

are indistinguishable or low-resolution images. Jersey num-



ber recognition can be achieved under most cases as long as

the numbers can be detected or segmented, but suffers from

human pose deformation, shooting angles, motion blur, il-

lumination conditions, etc. Moreover, the detection result

is influenced by not only these factors but also distractions

within or around the playground, such as yard markers,

house numbers (illustrated in Figure 1), clocks, commercial

logos and banners, etc.

Figure 2. Demonstration of robustness to false positives. Left:

original image; middle: Faster R-CNN results; right: proposed

pose-guided R-CNN results. Our framework prevents the wrong

detection of the character ’s’ in the background.

This paper introduces a pose-guided R-CNN framework

to address the challenges associated with player identifi-

cation through jersey numbers. Faster R-CNN [27] is a

two-stage object detector which can perform classification

and bounding-box (b-box) regression, and Mask R-CNN

[14] is an extension of it with predictions of segmentation

masks. This work adapts and expands these concepts with

re-designed region proposal and pose-guided b-box regres-

sion. The framework consists of two stages. The first stage

addresses the digit-person proposal matching problem us-

ing a RPN which outputs candidate object b-boxes across

three classes, background, player or digit (as opposed to

vanilla RPN, which only proposes two, foreground, back-

ground). Person proposals and digit proposals are collected

separately from a single RPN without adding many parame-

ters. The second stage uses a modification of Faster R-CNN

that replaces ROIPool with RoIAlign, and includes a hu-

man body key-point branch for predicting key-point masks.

The classification and b-box regression are performed on

pooled digit features concatenated with key-point masks.

This framework improves localization performance of dig-

its by associating person and digit Regions of Interest (RoI),

as well as adding human pose supervision signal. Conse-

quently, the model only targets digits inside person propos-

als with the help from keypoint locations. An example of

efficacy of our framework is illustrated in Figure 2.

The main contributions for this paper are as follows:

• The RPN has been re-designed to better fit the jersey

number recognition problem. The RPN outputs three

classes, i.e., ”background”, ”person” and ”digit”. By

dividing into person and digit proposals, it is possible

to match between them to jointly generate better pro-

posals.

• A pose-guided supervision for digit bounding-box is

proposed. It learns the offsets of proposals given the

prediction of human body keypoints. This module is

considered as the refinement of RPN proposals.

• State-of-the-art performance for the jersey number

recognition task in comparison to previously estab-

lished frameworks. Significantly different from pre-

vious works, ours is capable of locating and predicting

multiple numbers from input images.

• A noval dataset of 3567 images that offers person and

digit bounding-boxes, human body keypoints and digit

masks. One or more players and digits are annotated

per image. More images are being labeled, and the

dataset will be made publicly available.

The rest of the this paper is organized as follows. Sec-

tion 2 introduces the background of jersey number recog-

nition and related research. Section 3 discusses the frame-

work in details. Section 4 evaluates several models with the

introduced dataset as well as other wild images from web,

demonstrating the applicability across other sports. Several

key conclusions are drawn in Section 5.

2. Related Work

Jersey number recognition problem: The problem of

interest can be considered as the combination of person

identification and digit recognition problem in the context

of sports broadcast videos. Traditional approaches before

the dominance of deep learning usually first build an Opti-

cal Character Recognition (OCR) system then classify num-

bers based on segmentation results. Šari et al. [28] intro-

duce a complete OCR system to segment images in HSV

color space with heavy pre-processing and post-processing.

Ye et al. [34] combine tracking information of frames and a

OCR system to predict jersey number based on voting. Lu

et al. [21] take the person localizations of deformable part

model (DPM) detector then performs OCR and classifica-

tion with matching templates. These OCR-based methods

have limited flexibility and robustness dealing with larger

datasets. Switching to deep learning approaches, Gerke

[10] designs a neural network for jersey number recgoni-

tion on small number-centered jersey images. A recent



work from Li et al. [18] embed Spatial Transformer Net-

work (STN) modules [17] into a CNN architecture to lo-

calize jersey number more precisely and trains the network

with additional manually-labeled transformation quadran-

gles in a semi-supervised fashion.

Some works take sports field into considerations. De-

lannay et al. [7] formulate ground plane occupancy maps

from multi-views detection to perform localization, fol-

lowed by a OCR system and multi-class Support Vector

Machine (SVM). Gerke et al. [9] consider the player recog-

nition problem as a classifier fusion of players’ positional

features and jersey number convolutional neural network

(CNN) ones [10]. These works put strong assumptions

on the hidden pattern of player’s movement and mapping

of real-world and image coordinates of players. These as-

sumptions are neither well-constructed nor universal appli-

cable.

The jersey number recognition problem can be formu-

lated as person re-identification (ReID) as well. Some

approaches favor performing player identification directly.

Lu et al. [23] use handcrafted combination of features to

create a player representation model, then builds a L1-

regularized logistic regression classifier [25] for classifi-

cation, and a Conditional Random Field (CRF) graphical

model to predict unlabeled videos. Lu et al. [22] con-

tinue the work by introducing homography estimation and

a weakly-supervised learning to reduce the labor of man-

ual annotation via auxiliary text log information of game

matches. Senocak et al. [29] tackle player identification

problem by constructing a fused feature of multi-scale fea-

tures extracted from whole body image and pooled features

from body parts. We also consider player identification im-

portant since the jersey number features are highly corre-

lated to human body ones.

Scene Text recognition: Regarding this similar re-

search, Poignant et al. [26] propose a video OCR system

for text recognition combing audio information to perform

person identification. Goodfellow et al. [13] tackle number

sequences recognition in constrained natural images with

deep neural networks. Jaderberg et al. [16] proposed a com-

plete text recognition system for natural scene images with

heavily-engineered framework. [3, 30] use STNs for nat-

ural scene text detection and recognition. Bušta et al. [4]

modify Region Proposal Network (RPN) [27] with rotation

capability for better text localization. The above-mentioned

literature addresses the issue of scene text being in irregu-

lar shapes which is also common but more complicated in

jersey recognition problem. Jersey numbers are often dis-

torted by player pose deformations and fast motion blur. Li

et al. [18] adopt STN modules [17] in hope of improving

localization and rectifying number distortion. However, the

success of STN is built upon the fact of there being only one

jersey number per image in their dataset. it is not applicable

for complex scene with more involved people.

R-CNN based approaches: With the successes of R-

CNNs [12, 11, 27, 14], object detection and classification

are unified with high practicality. Mask R-CNN [14] and

Faster R-CNN [27] are built upon RPNs with pre-defined

anchors to generate region proposals, then the features are

pooled from these proposals and fed into regression and

classification heads. Vanilla RPN has 3 scales and 3 ratios

for each anchor, Ma et al. [24] extended the anchor design

with rotation parameter for better text proposal alignment.

Cai et al. [5] introduced a multi-stage Cascade R-CNN to

address the issue of degraded detection performance when

increasing Intersection-over-Union (IoU) threshold.

The main concern of recognition problem in nature

scenes is: how to get robust region proposals. This work

exploits the fact that locations of numbers and players are

highly related, and achieves the state-of-the-art results. Our

framework represents a strong advancement in automated

analysis of multi-sport videos.

3. Approach

In this section, the jersey number recognition task is de-

fined in details. A vanilla Faster R-CNN is replaced with a

3-class RPN and extended with additional key-point branch

and human pose supervision, yielding the ”Pose-guided R-

CNN” framework shown in Figure 3. For real-time appli-

cability, a corresponding light-weight model without sac-

rificing much performance that runs at 12 fps on a single

NVIDIA GeForce GTX 1080 Ti GPU.

3.1. Task Definition

A jersey number is defined as the number worn on a

player’s uniform in order to identify and distinguish play-

ers. In our work, only numbers on the back are consid-

ered where player’s jersey number is typically printed for

most sports. Exact one number is associated to one player,

and there can be multiple digits in a jersey number. Con-

sider the input image to the model is a image in which at

least one player presents with visible and recognizable jer-

sey number. The task is to predict any human-recognizable

digit instance [0, ..., 9] displayed in the image. While this

task has been modeled as an exact number classification

problem [10] as well as a number length prediction problem

[18], this work models the task as a 10-digit classification

problem.

3.2. RoIAlign Faster RCNN

From previous task definition, region-based methods are

extremely suitable for our problem. One of the success-

ful architectures is Faster R-CNN. It consists of a back-

bone feature extractor, a Region Proposal Network followed

by a feature pooling module, and network heads for b-box

regression and classification for each RoI. For an image,



Figure 3. The architecture of proposed pose-guided R-CNN (feature maps are just for illustrations and not representing the actual results).

shareable convolutional (Conv) features are extracted first

with choices of backbone architectures such as VGG-16

[31], ResNet [15] and ResNeXt [33] then the RPN gener-

ates a set of reference boxes (anchors) from an image of any

size. For each pixel location, there can be arbitrary number

of anchors given different scales and aspect ratios. A sliding

network will traverse each pixel location and tries to predict

if an object exists in the corresponding anchor and regress

the b-box from shared features. After the proposals are gen-

erated, the pooled features for each RoI will be fed into the

fully connected layers to perform detection and classifica-

tion. Feature extraction from each RoI is done with RoI max

pooling (RoIPool) such that a h×w Conv feature map is di-

vided into numbers of h/H×w/W sub-windows then max-

pooling is performed for each grid with quantization. For

each detected b-box, non-maximum suppression (NMS) is

used to filter out similar and close b-boxes.

Some modules are improved by Mask R-CNN. First it

incorporates the Feature Pyramid Network (FPN) [19] with

the backbone to generate multi-scale features. It then re-

places RoIPool with RoIAlign which interpolates the sam-

pled feature for better alignment between RoI and input fea-

ture maps. Beside, it adds an extra branch to generate object

masks in parallel in addition to classification and b-box re-

gression. The output mask is represented as a m × m px
binary mask from each RoI without losing the spatial layout

of convolutional features. For additional details, we refer

interested readers to [27, 19, 14]. Faster R-CNN is referred

to this improved implementation unless specified for the rest

of this paper.

The loss for this baseline is defined as a multi-task loss

both for final prediction and RPN proposals:

L = Lcls + λLreg, (1)

where Lcls is classification loss, Lreg is the b-box regres-

sion loss, and λ is the multi-task balance weight. We con-

sider each digit from 0 to 9 as a class, a ’person’ class and a

’background’ (’BG’) class, in total of K = 12 independent

classes. Ground-truth class is denoted by u where uBG = 0
by convention. For each RoI, the output layer will produce

a discrete probability distribution p = (p0, pK−1), then the

class loss is define as log loss for true class

Lcls(p, u) = log pu. (2)

The localization loss is defined as

Lreg(t
u, v) =

∑

i∈{x,y,w,h}

smoothL1
(tui − vi), (3)

‘ where u > 0 (’BG’ class does not contribute to the

loss), and tui is predicted bounding-box offsets four-tuple

(x, y, w, h) for class u. (x, y) is the top-left corner co-

ordinate, (w, h) is the predicted dimension of the b-box.

v = (vx, vy, vw, vh) as the ground-truth b-box. smoothL1

is a robust L1 loss against outliers defined in [11].

3.3. Proposal Association

Up to this point, we have generated proposals of either

one digit or a person and same for final detections. To col-

lect the final results in terms of jersey numbers, we reduce

our problem into a graph matching problem [32] with some

relaxations. Nodes of the graph are the person and digit

proposals, and the edges are all possible connections be-

tween pairs of person and digit proposals. The weight of

each edge is computed by the Euclidean distance between

the two centers of bounding boxes. And for each person

node, there must exist k edges matched with digit nodes,

where 1 ≤ k ≤ 2. So each person node can be matched

with up to two other digit nodes which is not necessarily

bipartite matching. The problem is then solved by choosing

the top-2 digit proposals for each person proposal.

3.4. Threeclass Region Proposal Network

The original RPN only estimate the probability of each

proposal being an object or not. It takes shared features to



Figure 4. Some examples from the dataset. (g), (k), and (l) are examples of multi-jersey annotations; (a), (f) and (g) are illustrations

of jersey numbers under common conditions; (c) and (h) exhibit contrast lighting conditions ; (i) shows a close-view image where

number aspect ratio is distorted; (b), (d) and (j) are examples of numbers influenced by pose deformation; (e) is highly distorted but still

recognizable.

perform classification and bounding-box regression of an-

chors. Our motivation is simple: instead of just 2 classes,

this work uses 3 classes to represent ’BG’, ’person’ and

’digit’ by adding very few parameters. In this way, anchors

are not treated independently. Anchors are divided into per-

son and digit anchors that are then correlated by their spatial

relationships.

No modifications are made to the pre-defined anchor set-

tings in [27] that there are lots of overlaps among anchors.

Each anchor is actually associated with many other anchors

in terms of location. For example, if an anchor is of scale

512, some anchors of scale less than 512 will be inside it.

The proposal scheme is modified to accommodate this an-

chor association. For training vanilla RPN, each positive

anchor is assigned based on two criteria. The following

conditions are provided along with three-class RPN:

• Anchor(s) that has/have the highest Intersection-over-

Union overlap with certain ground-truth box.

• Person anchors with IoU higher than 0.7.

• Digit anchors with IoU higher than 0.7 and inside any

person anchor.

After filtering and assignment of anchors, we associate each

digit anchor to its closest person anchor based on Euclidean

distance between centers of the two boxes.

3.5. Poseguided Supervision

Mask R-CNN can also perform human body keypoints

estimation as stated in [14]. Similar to the binary mask

representation of objects, each body keypoint is modeled

as an object except that there is only one pixel labeled in

the mask. For K types of keypoints, e.g. right shoulder,

left hip, etc., there are K individual one-hot masks. Hu-

man body modelling is not required in Mask R-CNN frame-

work to achieve fair results. In the case of jersey number

recognition, it is reasonable and achievable to perform jer-

sey number localization better given body keypoints lay-

outs. Though Faster R-CNN is capable of bounding-box

regression for jersey numbers, there are limitations under

more sophisticated scenarios. For example, complex jersey

patterns, different number fonts, and numbers on the court

introduce difficulties for RPN to generate satisfactory pro-

posals. To tackle the problem, a pose-guided supervision

branch is proposed for refining number localization.

A keypoint branch for predicting key-point mask is

added similar to [14, 2]. The keypoint detection is only

applied on person RoIs. At this point, each person RoI is

associated with multiple digit RoIs as a result of three-class

RPN. The keypoint mask is fed into a shallow network to

obtain b-box offsets with which we can correct the RPN

proposals. Features of refined proposals are then pooled

via ROIAlign. It involves a transformation from keypoint

locations to associated digit b-box regression in a hidden

space. Finally, a digit branch is formulated that is respon-

sible for digit recognition on refined RoIs. This cascade

design provides digit RoIs with more information outside

their regions.

The proposed pose-guided network takes predicted key-

points mask from each person RoI as inputs, and output the

b-boxes offsets of corresponding jersey numbers. It is a

small but effective network consisting of three fully con-

nected layers.

The loss function 1 can be modified accordingly by



Figure 5. Distribution of digits in the data.

adding related keypoint classification and regression loss

Lkeypoint
cls , Lkeypoint

reg . Then the regression loss for digit b-

box is computed from the RoI refined by keypoint mask.

The final loss function is

L = Lcls + λLreg + ηλLkeypoint
cls + γλLkeypoint

reg , (4)

where η and γ are hyper-parameters similar to λ.

4. Experimental Results

The proposed pose-guided R-CNN, as well as related

models are evaluated on the collected dataset, since there is

no publicly available dataset on jersey numbers. The evalu-

ation metrics used are standard Average Precision (AP) with

IoU thresholds set to 0.5 and 0.75, and AP average (mAP)

across IoU from 0.5 to 0.95. Number-level and digit-level

accuracies are also reported.

4.1. Dataset

The dataset is gathered from four full soccer matches.

The recording device used is a single Canon XA10 video

camera which is installed 15 feet high, and 10 to 20 feet

away from the horizontal baseline of the soccer field. For

better video qualities in terms of recognizable jersey num-

bers, the camera operator is allowed to pan and zoom ac-

cordingly. Next, we convert the collected videos into frames

by two different ways. One is to perform a human detec-

tor over frames scaled by 2 to get reliable images contain-

ing players. OpenPose [6] is used for person detection. In

order to collect more difficult images, Random shifts and

paddings are added to detected areas. The detection results

are padded by 150px and a random shift of 20px. After

data collection was complete, two professional annotators

labeled any legible jersey numbers via VGG Image Anno-

tator [8]. As a result, there are arbitrary number of ground-

truths (GT) per person per image.

A total of 3567 images are annotated with ground-truth

(GT) digit masks resulting in 6293 digit instances, see the

distribution in Figure 5. All images are also labeled with

person bounding-boxes and four human body key-points,

H W h w Digit mask area Digit mask center

Mean 315.06 214.53 34.70 18.90 424.40 (0.50, 0.29)

Std 92.11 38.47 15.16 7.85 20.69 (0.12, 0.09)

Table 1. Dataset statistics. H , W , h and w are image height, image

width, digit b-box height, and digit b-box width respectively. For

heights and widths, the unit is pixel; mask area counts the number

of pixels on the object; mask center is normalized within range [0,

1].

Framework Backbone Input ACCnumber ACCdigit

Gerke[10] - 402 65.04% -

Li et al. [18] - 2002 74.41% 77.86%

Li et al. [18] ResNet-50 5122 77.55% 80.23%

Faster R-CNN ResNet-FPN-50 2562 86.13% 89.32%

Faster R-CNN ResNet-FPN-50 5122 88.74% 90.09%

Faster R-CNN ResNet-FPN-101 5122 89.02% 91.11%

Pose-guided (Ours) ResNet-FPN-18 5122 81.66% 83.97%

Pose-guided (Ours) ResNet-FPN-50 2562 90.84% 92.13%

Pose-guided (Ours) ResNet-FPN-50 5122 91.01% 93.29%

Pose-guided (Ours) ResNet-FPN-101 5122 92.14% 94.09%

Table 2. Comparison of results among approaches. Our method

achieves the best accuracy (ACC) for both number-level and

digit-level recognition. Input is cropped grayscale image for

Gerke’s [10], and original RGB image for all other approaches.

namely left shoulder (LS), right shoulder (RS), left hip (LH)

and right hip (RH). There are 114 images contain multiple

numbers, and each digit is labeled with its associated person

box. Figure 4 shows a few examples for our dataset. Dataset

statistics are illustrated in Table 1.

Bounding-box sizes are sorted into small (area < 322),

medium (322 < area < 962) and large (area < 962) objects

like COCO dataset [20]. For person b-boxes, there are 4111

large, 213 medium and 1 small objects; for digit ones, there

are 7 large, 1210 medium and 5076 small objects.

4.2. Implementation Details

The hyper-parameters in the loss function 4 are all set

to one. All the experimented models make use of image

augmentation technique by applying random affine trans-

formation and hue/saturation manipulation to both origi-

nal image and corresponding b-box. The backbone fea-

ture used in all experiments is ResNet-FPN. We use ResNet

features at 4 different stages [C2, C3, C4, C5] to build

the feature pyramid. The constructed RPN features are

[P2, P3, P4, P5, P6]. The light-weight model removes C5
and P6. For RPN anchors, 5 scales [32, 64, 128, 256, 512]
and 3 ratios [0.3, 0.5, 1] are used. For the classification net-

work head, P6 is not used as input. Partial implementation

is adopted from [1].

Person and keypoint branches: The settings for person

branch are same as described in [14]. The keypoint branch

is based on mask prediction in Mask R-CNN, except that

the keypoint mask is up-sampled to 32× 32.

Digit branch: The pose-guided supervision module con-

sists of two 512 Fully-Connected (FC) layers, and a N × 4



FC layer with linear activation as digit b-box regression

head. N is the number of proposals, so it outputs the b-box

offsets for each digit RoI. The rest of the branch resembles

person branch except for the pooling size to be 16 × 16 in

digit classification head. It gives better performance since

digits are relative small in images.

Different settings including but not limited to changing

the backbone features, input image size, image operations

(re-sizing, padding, cropping, etc.), number of image chan-

nels are used in experimentation. ResNet-FPN-18, ResNet-

FPN-50 and ResNet-FPN-101 with/without proposed pose-

guided module are investigated. For collecting convincing

results, the dataset is divided video-wisely, with video 0, 2,

3 for training and video 1 for testing.

Pre-train: To accommodate the lack of person-keypoint

data in the collected dataset, the network is pre-trained on

the COCO dataset [20] with a frozen digit branch. In this

dataset, 17 human body keypoints are annotated, but four

of them are used for less parameters and better conver-

gence. Person and keypoint branches are then unfrozen, and

the digit branch is trained with Street View House Number

(SVHN) dataset [13]. This large-scale dataset consists of

digit sequences with each digit labeled with bounding box.

The model benefits from this dataset for training the back-

bone feature extractor.

Training: The model is trained for 100 epochs with

starting learning rate (LR) 0.01. Learning rate is reduced

by 10 every 20 epochs. The rest hyper-parameters are same

with Mask R-CNN [14].

Testing: The settings are the same as training except that

less (set to 100) detections are kept.

Figure 6. Precision-Recall Curves over each class. Left figure

shows the Faster R-CNN results; right one shows ours results with

improvement.

4.3. Main Results

The proposed model is compared to available methods

in the field of jersey number recognition, see Table 2. All

variants of our model outperform previous state-of-the-art

models including Gerke [10] and Li et al. [18]. These two

approaches can only perform image-level recognition. For

Method ACCnumber ACCdigit mAP AP50 AP75

Faster R-CNN 87.23% 89.04% 40.60 67.21 45.58

Pose-guided (Ours) 90.44% 93.12% 44.74 73.31 48.77

Table 3. Comparison of Faster R-CNN and our pose-guided R-

CNN results. The backbone used is ResNet-FPN-50, and input

image size is 512× 512.

fair comparison, multi-number images are removed during

training and testing. Each image is grayscale, cropped and

re-sized to 40 × 40 in accordance with [10]. Without ac-

cess to the dataset of [18], this architecture is implemented

without axis supervision. Its variant with ResNet-50 is also

implemented. Faster-RCNN is also a strong baseline which

already outperforms [10, 18]. The proposed model achieves

even better performance that is highly robust to post vari-

ations. Figure 7 visualizes the recognition results against

different poses. We evaluate both digit-level and number-

level accuracies for our model and [10, 18]. The results are

illustrated in Table 2.

Evaluation metrics including number-level and digit-

level accuracies, mean average precision (mAP ), AP50,

and AP75 are used to compare variants of the R-CNN ap-

proaches. APs for different object scales are not used since

most ’person’ boxes are large and most ’digit’ are small.

The results are shown in Table 3. The proposed pose-guided

R-CNN gives the best overall results.

4.4. Ablation Study

In this section, we only consider ResNet-FPN-50 as our

backbone given several reasons: it has around 19M less

parameters; we have a small dataset so ResNet-50 is more

suitable; we did not fine-tune the models so better perfor-

mance can be achieved through regularization. Therefore,

we choose ResNet-FPN-50 over ResNet-FPN-101 without

sacrificing much performance. Multi-number images are

included for experiments in this section.

Input size: To build feature pyramid for ResNet-50, we

need to resize the image so that its width and height can be

divided by 2 at least 5 times. We need the image size to

be large enough since the numbers in the dataset are mostly

small objects. For simplicity, we re-size to square image

with paddings while keeping the aspect ratio. We did exper-

iments with several sizes: 128, 256, 512, 1024. When the

input size is 512, it achieves the best performance of mAP
44.74, which outperforms 10.20, 3.12 and 0.56 points with

respect to size 128, 256, and 1024.

Does 3-class RPN solely help: With the baseline of

Faster R-CNN, we want to evaluate if replace the vanilla

RPN with our 3-class RPN help improve the performance.

We use image size of 512× 512 as input, and ResNet-FPN

backbone for this experiment’s settings. Three-class RPN

has −0.09, 0.12 and −0.14 gain respectively over vanilla



Figure 7. Recognition results across different poses. Most-left and most-right poses are extreme cases in our test set for this identity.

Figure 8. Exemplary results from wild images collected from in-

ternet. Fails: ’7’ is classified wrongly as ’2’ in second last image;

’6’ in the last image is classified wrongly as ’5’.

RPN on mAP , AP50, and AP75. Both give similar experi-

mental results, so it suggest that by just switching to three-

class RPN, the performance is not significantly influenced.

RPN is a shallow ’neck’ network for anchor classification

and regression. Splitting ’object’ class into ’person’ and

’digit’ does not introduce hardness for these two tasks, but

we can not guarantee multi-class RPN will work for more

classes. The key function of our three-class RPN is divid-

ing then matching person and digit anchors. If the follow-

ing structure remains the same with Faster R-CNN, the re-

sults are expected to be similar. However, as we already

match the anchors in three-class RPN, the proposal associa-

tion procedure for number-level prediction can be removed.

Pose-guided R-CNN: Table 3 suggests that there is 4.14

gain over Faster R-CNN. We also report AP50 for each class

for these two models illustrated in Figure 6. It shows sig-

nificant improvement achieved by adding pose supervision

which has a keypoint mAP of 58.2. The reason of poor

performance on ’0’ is that We have very few images contain

’0’ in test dataset, so it drops drastically even if only one of

them is classified incorrectly. Figure 7 provides recognition

results of our pose-guided R-CNN model against different

poses. However, there are still some limitations under ex-

treme poses as the last two examples shown in Figure 7. For

testing our model’s generalization, We also collected some

images from internet videos for different sports: basketball,

American football and hockey. The results are illustrated in

Figure 8. Fair detection results are still obtained, but clas-

sification performance is reduced. Recognition is possibly

simpler for soccer and basketball due to plain jerseys, while

jerseys in American football and hockey are normally bulky

with sharp contours. Better performance can be achieved by

gathering more data across different sports.

5. Conclusion

In this work, a pose-guided R-CNN multi-task frame-

work is proposed as an all-in-one solution for person detec-

tion, body keypoints prediction and jersey number recogni-

tion. It produces the best digit accuracy of 94.09% com-

paring with related literature. Three insights are used to

achieve this performance: 1. re-designed three-class RPN

for anchor association; 2. implementation of pose-guided

localization network that can impose proposal refinement

for jersey number location through human pose; 3. the gen-

erality of region-based CNN model. By combining the three

components, the proposed approach is end-to-end trainable

and can be easily extended to other sports.
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